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This paper develops the high-order accurate entropy stable (ES) finite difference schemes 
for the shallow water magnetohydrodynamic (SWMHD) equations. They are built on the 
numerical approximation of the modified SWMHD equations with the Janhunen source 
term. First, the second-order accurate well-balanced semi-discrete entropy conservative 
(EC) schemes are constructed, satisfying the entropy identity for the given convex entropy 
function and preserving the steady states of the lake at rest (with zero magnetic field). 
The key is to match both discretizations for the fluxes and the non-flat river bed 
bottom and Janhunen source terms, and to find the affordable EC fluxes of the second-
order EC schemes. Next, by using the second-order EC schemes as building block, high-
order accurate well-balanced semi-discrete EC schemes are proposed. Then, the high-
order accurate well-balanced semi-discrete ES schemes are derived by adding a suitable 
dissipation term to the EC scheme with the WENO reconstruction of the scaled entropy 
variables in order to suppress the numerical oscillations of the EC schemes. After that, 
the semi-discrete schemes are integrated in time by using the high-order strong stability 
preserving explicit Runge-Kutta schemes to obtain the fully-discrete high-order well-
balanced schemes. The ES property of the Lax-Friedrichs flux is also proved and then 
the positivity-preserving ES schemes are studied by using the positivity-preserving flux 
limiters. Finally, extensive numerical tests are conducted to validate the accuracy, the well-
balanced, ES and positivity-preserving properties, and the ability to capture discontinuities 
of our schemes.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

The shallow water equations are widely used in atmospheric flows, tides, storm surges, river and coastal flows, lake 
flows, tsunamis, etc. They describe the flow with free surface under the influence of gravity and the bottom topology, where 
the vertical dimension is much smaller than any typical horizontal scale. Numerical simulation is an effective tool to solve 
them and a great variety of numerical methods are available in the literature, e.g. [4,32,38,48,49,53–55] and the references 
therein.

Here we are concerned with numerical methods for the shallow water magnetohydrodynamic (SWMHD) equations, 
which take into account the effect of the magnetic field, originally proposed in [24] for studying the global dynamics of 
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the solar tachocline. The two-dimensional (2D) SWMHD equations with non-flat bottom topography [24,44] read the fol-
lowing quasi-linear hyperbolic balance laws

∂U

∂t
+

2∑
�=1

∂ F �(U )

∂x�

= −G(U ), (1.1)

with the divergence-free condition

∇ · (hB) = 0, (1.2)

where U is the conservative variables vector, and F 1 and F 2 are respectively the flux vectors along the x1- and x2 directions 
and defined by

U = (
h, hvT, hBT)T

,

F � =
(

hv�, hv�vT − hB� BT + 1

2
gh2eT

�, h(v� B − B�v)T
)T

, � = 1,2,

G = (
0, gh∇b, 0T

2

)T
, 0T

2 = (0,0),

(1.3)

with the height of conducting fluid h, the fluid velocity vector v = (v1, v2)
T, the magnetic field vector B = (B1, B2)

T, the 
gravitational acceleration constant g , the bottom topography b = b(x, y), and e� denotes the �th column of the 2 × 2 unit 
matrix.

Existing numerical studies for the SWMHD equations include the evolution Galerkin scheme [31], space-time conser-
vation element solution element (CESE) method [43], central-upwind schemes [59], Roe-type schemes [30], second-order 
entropy stable (ES) finite volume scheme (satisfying the semi-discrete entropy inequality) [51], high-order CESE scheme up 
to 4th-order [1], etc. Some have dealt with the non-flat topography [51,59], and are well-balanced in the sense that the 
schemes can preserve the lake at rest. For the numerical solutions of the SWMHD equations, we need to deal carefully with 
the divergence-free constraint (1.2). In the ideal magnetohydrodynamic (MHD) case, many works have focused on this is-
sue, for example, the projection method [8], the constrained transport method and its variants [2,18,37,45], the eight-wave 
formulation of the MHD equations [42], the hyperbolic divergence cleaning method [13], the locally divergence-free DG 
method [35], the “exactly” divergence-free central DG method [36], and so on.

For the quasi-linear hyperbolic conservation laws or balance laws, it may be the case that no classical solution exists 
so that the weak solution should be defined in the sense of distributions. Unfortunately, such weak solutions might be 
non-unique. The entropy condition plays an essential role in choosing the physically relevant solution from the collection of 
all possible weak solutions.

Definition 1 (Entropy function). A strictly convex function η(U ) is called an entropy function for the system (1.1)-(1.3) if there 
are associated entropy fluxes q1(U ) and q2(U ) such that

q′
�(U ) = V T F ′

�(U ), � = 1,2, (1.4)

where V = η′(U )T is called the entropy variables, and (η, q�) is an entropy pair.

For the smooth solutions of (1.1)-(1.3) with the entropy pair (η, q�), multiplying (1.1) by V T gives the entropy identity

∂η(U )

∂t
+

2∑
�=1

∂q�(U )

∂x�

= −V TG(U ). (1.5)

However, if the solutions contain discontinuities, then the above identity does not hold.

Definition 2 (Entropy solution). A weak solution U of (1.1) is called an entropy solution or a physically relevant solution if for 
all entropy pairs (η, q�), the entropy inequality or condition

∂η(U )

∂t
+

2∑
�=1

∂q�(U )

∂x�

�−V TG(U ), (1.6)

holds in the sense of distributions.

The entropy conditions are of great importance in the well-posedness of hyperbolic conservation laws or balance laws, 
e.g. (1.1), and may improve the robustness of the numerical schemes, thus it is meaningful to seek their numerical schemes 
2
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satisfying the discrete entropy inequality. For the scalar conservation laws, the conservative monotone schemes are nonlin-
early stable and satisfy the discrete entropy conditions so that their solutions can converge to the entropy solution [11,25]; 
the E-schemes satisfy the semi-discrete entropy condition for any convex entropy [40,41]. However, those schemes are only 
first-order accurate. Generally, it is very hard to prove that the high-order accurate schemes of the scalar conservation 
laws and the schemes for the system of hyperbolic conservation laws satisfy the entropy inequality for any convex entropy 
function. Two relative works are presented in [7] and [28]. The former is second-order accurate and not in the standard 
finite volume form, while the latter approximates the entropy variables and needs solving nonlinear equations at each time 
step. In view of this, the researchers usually try to study the high-order accurate entropy conservative (EC) (resp. entropy 
stable (ES)) schemes, which satisfy the discrete entropy identity (resp. inequality) for a given entropy pair. The second-order 
EC schemes were built in [46,47], and their higher-order extension was studied in [33]. It is known that EC schemes may 
become oscillatory near the shock waves, thus additional dissipation terms have to be added into the EC schemes to obtain 
the ES schemes. Combining the EC flux of the EC schemes with the “sign” property of the ENO reconstructions, the arbitrary 
high-order ES schemes were constructed by using high-order dissipation terms [21]. Some ES schemes based on the dis-
continuous Galerkin (DG) framework were also studied, e.g. the ES space-time DG formulation [3,26] and the ES nodal DG 
schemes using suitable quadrature rules [10]. The ES schemes based on summation-by-parts (SBP) operators were developed 
for the Navier-Stokes equations [19]. As a base of those works, the construction of the affordable two-point EC flux is one 
of the key parts, and has been extended to the shallow water equations [20,23], the MHD equations [9,50], the relativistic 
(magneto-)hydrodynamic equations [15–17,52], and so on. Those ES MHD schemes are built on the modified MHD equa-
tions with the non-conservative source terms, e.g. the Powell source terms [9,14,42] or the Janhunen source terms [29,50]. 
The Powell source term can be used to obtain the symmetrizable MHD equations, but cannot preserve the conservation of 
the momentum and energy, while the Janhunen source term can preserve the conservation of the momentum and energy 
but cannot be used to obtain the symmetrizable MHD equations. Due to the adding source terms, the sufficient condition 
proposed in [46] for a finite difference scheme satisfying an entropy identity should be modified, see [9]. One should also 
take care of the discretization of the source terms, to match it to the discretization of the flux gradients and ensure that the 
final schemes satisfy the semi-discrete entropy inequality.

The paper aims at constructing the high-order accurate ES finite difference schemes for the SWMHD equations (1.1)
for a given entropy pair. With suitable discretization of the non-flat bottom topography and Janhunen source terms in the 
modified SWMHD equations, a two-point EC flux is derived for constructing the semi-discrete second-order accurate well-
balanced EC schemes satisfying the entropy identity. Our discretization of the source terms is essential to achieve both 
high-order accuracy and well-balance, and does not meet the computational issue in [51] when the magnetic field is zero. 
The high-order well-balanced EC schemes are constructed by using the above two-point EC schemes as building blocks. In 
order to avoid the numerical oscillation produced by the EC schemes around the discontinuities, some suitable dissipation 
terms utilizing the weighted essentially non-oscillatory (WENO) reconstruction in the scaled entropy variables are added 
to the EC fluxes to get the high-order accurate well-balanced ES schemes satisfying the semi-discrete entropy inequality. 
The above semi-discrete EC and ES schemes are integrated in time by using the high-order accurate explicit strong-stability 
preserving Runge-Kutta schemes to obtain the fully-discrete high-order accurate well-balanced schemes. The ES property of 
the Lax-Friedrichs flux is also proved and then the positivity-preserving ES schemes are developed by using the positivity-
preserving flux limiters.

The rest of the paper is organized as follows. Section 2 presents the modified SWMHD equations, the entropy pair and 
necessary notations. Section 3 constructs the affordable two-point EC flux and the semi-discrete EC and ES schemes for 
the 1D SWMHD equations, and proves the well-balanced properties of the EC and ES schemes. The positivity-preserving ES 
scheme is also studied. Section 4 gives the 2D well-balanced EC and ES schemes. Extensive numerical tests are conducted 
in Section 5 to validate the effectiveness and performance of our schemes. Section 6 gives some conclusions.

2. Modified SWMHD equations

This section gives an entropy analysis of the SWMHD equations with the non-flat bottom topography.
If the solutions are smooth, then the SWMHD equations (1.1)-(1.3) can be equivalently cast into the primitive variable 

form

∂h

∂t
+ ∇ · (hv) = 0,

∂ v

∂t
+ (v · ∇)v − (B · ∇)B + g∇hT = −gh∇bT + ∇ · (hB)B/h,

∂ B

∂t
+ (v · ∇)B − (B · ∇)v = ∇ · (hB)v/h,

∇ · (hB) = 0.

(2.1)

Defining the mathematical entropy as the total energy [20,51]

η(U ,b) := 1
h(|v|2 + |B|2) + 1

gh2 + ghb, (2.2)

2 2

3
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and using (2.1) gives

∂tη +
2∑

�=1

∂x�

[(
1

2
(|v|2 + |B|2) + gh + gb

)
hv� − hB�(v · B)

]
− (v · B)∇ · (hB) = 0,

which means that under the constraint ∇ · (hB) = 0, the following quantities

η(U ,b), q�(U ,b) :=
(

1

2
(|v|2 + |B|2) + gh + gb

)
hv� − hB�(v · B), (2.3)

satisfy an additional conservation law. However, unfortunately, the pair (η, q�) defined in (2.2)-(2.3) does not satisfy (1.4), 
since

∂q�(U ,b)/∂U = V T F ′
�(U ) + (v · B)(hB�)

′(U ),

where the vector V = (∂η/∂U )T is explicitly given by

V =
(

g(h + b) − 1

2

(
|v|2 + |B|2

)
, vT, BT

)T

.

It is not difficult to verify that the matrix ∂U/∂V is symmetric and positive definite.
Similar to the Janhunen source term for the ideal MHD equations [29], one needs to add some non-conservative source 

terms to get a modified SWMHD system for (1.1)-(1.3) as follows

∂U

∂t
+

2∑
�=1

∂ F �

∂x�

+ �T∇ · (hB) = −G(U ), (2.4)

where

� = (0,0,0, vT),

and satisfies �V = �(V ) := v · B . Note that the modified SWMHD equations without bottom topography have been dis-
cussed in the literature, see e.g. [51].

Taking the dot product of V with (2.4) yields

V T ∂U

∂t
+

2∑
�=1

(
V T ∂ F �

∂U
+ �(V )

∂(hB�)

∂U

)
∂U

∂x�

+ V TG(U )

=∂η

∂t
+

2∑
�=1

(
∂q�

∂U
+ (�(V ) − (v · B))

∂(hB�)

∂U

)
∂U

∂x�

+ V TG(U ) = 0,

i.e.

∂η

∂t
+

2∑
�=1

∂q�

∂x�

= 0, (2.5)

where we have used the identity

2∑
�=1

∂q�(U ,b)

∂U

∂U

∂x�

+ V TG(U ) =
2∑

�=1

∂q�

∂x�

.

Notice that the identity (2.5) is obtained without using the divergence-free condition, and will be useful in constructing 
an entropy stable (ES) scheme because the numerical divergence of hB may not be zero. Moreover, we define the “entropy 
potential” ψ� from the given (η(U , b), q�(U , b)) by

ψ� := V T F �(U ) + �(V )(hB�) − q�(U ) = 1

2
gh2 v�,

which makes the following identity true
4
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∫
�

(
∂η

∂t
+ ∂q�

∂x�

)
dx =

∫
�

V T
(

∂U

∂t
+ ∂ F �(U )

∂x�

+ �T∇ · (hB) + G(U )

)
dx

=
∫
�

(
∂η(U )

∂t
+ ∂(V T F �(U ))

∂x�

− ∂V T

∂x�

F (U ) + ∇ · (�hB) − ∇� · (hB) + V TG(U )

)
dx

=
∫
�

(
∂η(U )

∂t
+ ∂(V T F �(U ))

∂x�

+ ∇ · (�hB) − ∂ψ�(U )

∂x�

)
dx.

The “entropy potential” plays an important role in obtaining the sufficient condition for the two-point entropy conservative 
(EC) fluxes.

Remark 2.1. Notice that the entropy identity (2.5) is slightly different from (1.5), since the source terms in the SWMHD 
equations have special structure, and then V TG(U ) in (1.5) can be absorbed into the left-hand side by using

∂(ghb)

∂t
+

2∑
�=1

∂(ghbv�)

∂x�

= V TG(U ).

In other words, the difference between the entropy pair (η, q�) in (2.5) and that in (1.5) is (ghb, ghbv�).

3. One-dimensional schemes

This section constructs the high-order accurate well-balanced EC and ES schemes for the x-split system of (2.4), i.e.,

∂U

∂t
+ ∂ F 1(U )

∂x
= −�T ∂(hB1)

∂x
− GT

1
∂b

∂x
, (3.1)

where G1 = (0, gh, 0, 0, 0)T.

3.1. Second-order EC schemes

Let us consider a uniform mesh in x: x1 < x2 < · · · < xNx , with the spatial step size 	x = xi − xi−1, i = 2, · · · , Nx and the 
semi-discrete conservative finite difference scheme for (3.1) as follows

d

dt
U i = − 1

	x

(
F̂ i+ 1

2
− F̂ i− 1

2

)
− �T

i

{{hB1}}i+ 1
2

− {{hB1}}i− 1
2

	x
− (G1)

T
i

{{b}}i+ 1
2

− {{b}}i− 1
2

	x
, (3.2)

where { {a} }i+ 1
2

denotes the mean value of a at xi+ 1
2

, i.e., { {a} }i+ 1
2

= (ai + ai+1)/2, U i(t) and V i(t) approximate the point 
values of U (xi, t), V (xi, t), respectively, F̂ i+ 1

2
(t) is the numerical flux approximating F 1(x, t) at xi+ 1

2
= xi + 	x/2, and the 

second-order central difference is used to approximate ∂(hB1)/∂x and ∂b/∂x in the source terms.

Definition 3 (Entropy conservative scheme). The scheme (3.2) is entropy conservative (EC) and corresponding numerical flux 
F̂ i+ 1

2
(t) is called the EC flux, if the solution of (3.2) satisfies a semi-discrete entropy identity

d

dt
η(U i(t)) + 1

	x

(̃
qi+ 1

2
(t) − q̃i− 1

2
(t)

)
= 0, (3.3)

for some numerical entropy flux ̃qi+ 1
2

consistent with the given physical entropy flux q1.

The following lemma gives a sufficient condition for the semi-discrete scheme (3.2) to be EC, with the discretization of 
the source terms.

Lemma 3.1. If a symmetric consistent two-point flux ̃F i+ 1
2

:= F̃ 1(U i, U i+1) satisfying

�V �T · F̃ 1 = �ψ1� − ���{{hB1}} + g�hbv1� − g�hv1�{{b}}, (3.4)

is used in (3.2), where �a� and { {a} } denote the jump and mean of a, respectively, then the semi-discrete scheme (3.2) is second-order 
accurate and EC, with the numerical entropy flux

q̃i+ 1 = {{V }}T
1 F̃ i+ 1 + {{�}}i+ 1 {{hB1}}i+ 1 − {{ψ1}}i+ 1 + g{{hv1}}i+ 1 {{b}}i+ 1 − g{{hbv1}}i+ 1 . (3.5)
2 i+ 2 2 2 2 2 2 2 2

5
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Proof. Left multiplying (3.2) by V T
i and using �(V ) = �V gives

dηi

dt
= − 1

	x

[
V T

i

(
F̃ i+ 1

2
− F̃ i− 1

2

)
+ �(V i)

(
{{hB1}}i+ 1

2
− {{hB1}}i− 1

2

)
+ ghi(v1)i

(
{{b}}i+ 1

2
− {{b}}i− 1

2

)]
.

The right-hand side term can be further rearranged as follows

V T
i

(
F̃ i+ 1

2
− F̃ i− 1

2

)
+ �(V i)

(
{{hB1}}i+ 1

2
− {{hB1}}i− 1

2

)
+ ghi(v1)i

(
{{b}}i+ 1

2
− {{b}}i− 1

2

)
=
(

{{V }}i+ 1
2

− 1

2
�V �i+ 1

2

)T

F̃ i+ 1
2

−
(

{{V }}i− 1
2

+ 1

2
�V �i− 1

2

)T

F̃ i− 1
2

+
(

{{�}}i+ 1
2

− 1

2
���i+ 1

2

)
{{hB1}}i+ 1

2
−

(
{{�}}i− 1

2
+ 1

2
���i− 1

2

)
{{hB1}}i− 1

2

+ g

(
{{hv1}}i+ 1

2
− 1

2
�hv1�i+ 1

2

)
{{b}}i+ 1

2
− g

(
{{hv1}}i− 1

2
+ 1

2
�hv1�i− 1

2

)
{{b}}i− 1

2

={{V }}T
i+ 1

2
F̃ i+ 1

2
+ {{�}}i+ 1

2
{{hB1}}i+ 1

2
+ g{{hv1}}i+ 1

2
{{b}}i+ 1

2

− {{V }}T
i− 1

2
F̃ i− 1

2
− {{�}}i− 1

2
{{hB1}}i− 1

2
− g{{hv1}}i− 1

2
{{b}}i− 1

2

− 1

2
�ψ1�i+ 1

2
− 1

2
�ψ1�i− 1

2
− 1

2
g�hbv1�i+ 1

2
− 1

2
g�hbv1�i− 1

2

=
(
{{V }}T

i+ 1
2

F̃ i+ 1
2

+ {{�}}i+ 1
2
{{hB1}}i+ 1

2
+ g{{hv1}}i+ 1

2
{{b}}i+ 1

2

)
− {{ψ1}}i+ 1

2
− g{{hbv1}}i+ 1

2

−
(
{{V }}T

i− 1
2

F̃ i− 1
2

+ {{�}}i− 1
2
{{hB1}}i− 1

2
+ g{{hv1}}i− 1

2
{{b}}i− 1

2

)
+ {{ψ1}}i− 1

2
+ g{{hbv1}}i− 1

2

= q̃i+ 1
2

− q̃i− 1
2
,

where ai = { {a} }i+ 1
2

− 1
2 �a�i+ 1

2
and ai = { {a} }i− 1

2
+ 1

2 �a�i− 1
2

have been used in the first equality, the condition (3.4) has been 
used in the second equality, and 1

2 �a�i+ 1
2

+ 1
2 �a�i− 1

2
= { {a} }i+ 1

2
− { {a} }i− 1

2
has been used in the third equality. Thus the 

scheme (3.2) with F̂ i+ 1
2

= F̃ 1(U i, U i+1) is EC in the sense of

dηi

dt
+ 1

	x

(̃
qi+ 1

2
− q̃i− 1

2

)
= 0.

The discretization of the source terms is second-order accurate since the second-order central difference is used, and the 
results in [46] show that the discretization of the flux gradient is second-order accurate, therefore the scheme (3.2) with 
F̂ i+ 1

2
= F̃ 1(U i, U i+1) is second-order accurate. �

Remark 3.1. Since the central difference is used for approximating the non-flat river bed bottom and Janhunen source terms, 
the sufficient condition (3.4) is different from that in [20,51]. Moreover, such discretization of the source terms is essential 
to achieve high-order accuracy and well-balance, see the subsection 3.2.

Below we present such EC flux satisfying (3.4).

Theorem 3.2. For the x-split SWMHD equations (3.1), the following flux ̃F 1(U i, U i+1)

F̃ 1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

{{h}}{{v1}}
{{h}}{{v1}}2 + g

2
{{h2}} − {{hB1}}{{B1}} + g ({{hb}} − {{h}}{{b}})

{{h}}{{v1}}{{v2}} − {{hB1}}{{B2}}
{{h}}{{v1}}{{B1}} − {{hB1}}{{v1}}
{{h}}{{v1}}{{B2}} − {{hB1}}{{v2}}

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(3.6)

is an EC flux, consistent with the physical flux F 1(U ) defined in (1.3).

Proof. The key is to use the identity

�ab� = {{a}}�b� + {{b}}�a�, (3.7)
6
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and rewrite the jumps of the entropy variables V , the potential ψ1, �, hv1 and hbv1 as some linear combinations 
of the jumps of a specially chosen parameter vector. For simplicity in derivation, the parameter vector is chosen as 
(h,b, v1, v2, B1, B2), then

�V �T =
(

g�h� + g�b� − {{v1}}�v1� − {{v2}}�v2� − {{B1}}�B1� − {{B2}}�B2�,

�v1�, �v2�, �B1�, �B2�
)
,

�ψ1� =g{{h}}{{v1}}�h� + 1

2
g{{h2}}�v1�,

��� ={{B1}}�v1� + {{B2}}�v2� + {{v1}}�B1� + {{v2}}�B2�,

g�hbv1� − g�hv1�{{b}} =g{{h}}{{v1}}�b� + g{{hb}}�v1�.

Substituting them into (3.4), and equating the coefficients of the same jump terms gives the numerical flux in (3.6).
If letting U i = U i+1, it is easy to see the consistency of the numerical flux in (3.6). �

Remark 3.2. For the y-split system of (2.4), the rotational invariance may be used to get the EC fluxes consistent to F 2(U )

defined in (1.3). The EC flux (3.6) is the same as the one in [51].

Remark 3.3. The present discretization of the source terms is different from that in [51], and does not meet the computa-
tional issue in [51] if { {B1} } = 0 or { {B2} } = 0.

Remark 3.4. If the magnetic field B ≡ 0, then the SWMHD equations reduce to the shallow water equations (SWEs) and 
the above SWMHD scheme (3.2) with F̂ i+ 1

2
= F̃ 1(U i, U i+1) defined in (3.6) reduces to the well-balanced EC scheme for the 

SWEs with the EC flux

F̃ 1 =

⎛⎜⎜⎝
{{h}}{{v1}}

{{h}}{{v1}}2 + g

2
{{h2}} + g ({{hb}} − {{h}}{{b}})

{{h}}{{v1}}{{v2}}

⎞⎟⎟⎠ ,

which is the same as the EC flux in [20], except for the second component due to the different approximation of the source 
terms.

Lemma 3.1 and Theorem 3.2 tell us that the SWMHD scheme (3.2) for (3.1) with F̂ i+ 1
2

= F̃ 1(U i, U i+1) defined in (3.6) is 
second-order accurate and EC. Moreover, we can show that it is well-balanced.

Theorem 3.3. The scheme (3.2) with the EC flux (3.6) is well-balanced, in the sense that when the magnetic field is zero, it preserves 
the lake at rest, that is to say, for the given initial data

(v1)i = (v2)i ≡ 0, hi + bi ≡ C, ∀i,

the solutions of (3.2) satisfy

d

dt
hi ≡ 0,

d

dt
(hv1)i ≡ 0,

d

dt
(hv2)i ≡ 0.

Proof. Under the hypotheses, one can verify that the scheme (3.2) satisfies 
d

dt
hi ≡ 0,

d

dt
(hv2)i ≡ 0 and

d

dt
(hv1)i = − g

	x

[(1

2
{{h2}}i+ 1

2
− 1

2
{{h2}}i− 1

2

)
+

(
{{hb}}i+ 1

2
− {{hb}}i− 1

2

)
−

(
{{h}}i+ 1

2
{{b}}i+ 1

2
− {{h}}i− 1

2
{{b}}i− 1

2

)
+ hi

(
{{b}}i+ 1

2
− {{b}}i− 1

2

)]
= − g

	x

[1

2

(
{{h}}i+ 1

2
�h�i+ 1

2
+ {{h}}i− 1

2
�h�i− 1

2

)
+

(
{{h}}i+ 1

2
bi+1 − {{h}}i− 1

2
bi−1

)
−

(
{{h}}i+ 1

2
{{b}}i+ 1

2
− {{h}}i− 1

2
{{b}}i− 1

2

)]
= − g [1 (

{{h}}i+ 1 �h�i+ 1 + {{h}}i− 1 �h�i− 1

)
+ 1 (

{{h}}i+ 1 �b�i+ 1 + {{h}}i− 1 �b�i− 1

)]

	x 2 2 2 2 2 2 2 2 2 2

7
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= − g

2	x

[
{{h}}i+ 1

2
�h + b�i+ 1

2
+ {{h}}i− 1

2
�h + b�i− 1

2

]
≡0.

Therefore the scheme (3.2) preserves the lake at rest. �
Remark 3.5. The second-order EC scheme (3.2) satisfies the 1D moving equilibrium state [20]

mi+ 1
2

= {{h}}i+ 1
2
{{v1}}i+ 1

2
≡ C1, pi = (v1)

2
i /2 + g(hi + bi) ≡ C2, ∀i.

In fact, it is easy to verify that

d

dt
hi = − 1

	x

(
mi+ 1

2
− mi− 1

2

)
≡ 0,

d

dt
(hv1)i = − g

	x

[1

2

(
{{h}}i+ 1

2
�p�i+ 1

2
+ {{h}}i− 1

2
�p�i− 1

2

)
+ (v1)i

(
mi+ 1

2
− mi− 1

2

)]
≡ 0.

3.2. High-order EC schemes

To develop the high-order well-balanced EC schemes, our task is to get the high-order numerical fluxes and conduct the 
matched high-order discretization of the source term related to the non-flat river bed bottom and the Janhunen source term 
in (3.1).

Following the way in [33], the EC flux of the 2pth-order (p ∈N+) accurate scheme can be obtained by using the linear 
combinations of the “second-order accurate” EC flux (3.6) as follows

F̃
2pth
i+ 1

2
=

p∑
r=1

α
p
r

r−1∑
s=0

F̃ 1(U i−s, U i−s+r), (3.8)

which satisfies

1

	x

(
F̃

2pth
i+ 1

2
− F̃

2pth
i− 1

2

)
= ∂ F 1

∂x

∣∣∣
i
+O(	x2p).

The readers are referred to [21,33] for more details on constructing the “high-order accurate” EC flux.
To make the resulting schemes high-order accurate, well-balanced and EC, it is essential that the high-order finite dif-

ference approximations of the spatial derivatives ∂(hB1)/∂x and ∂b/∂x in the source terms should match the “high-order 
accurate” EC flux (3.8). To this end, based on the observation that the second-order central differences for the source terms

(hB1)i+1 − (hB1)i−1

2	x
=

{{hB1}}i+ 1
2

− {{hB1}}i− 1
2

	x
,

bi+1 − bi−1

2	x
=

{{b}}i+ 1
2

− {{b}}i− 1
2

	x
,

used in the second-order EC scheme (3.2), have the same form as the discretization of the flux gradient, using those second-
order central differences as a building block can obtain the high-order approximations of the source terms as follows

(h̃B1)
2pth
i+ 1

2
= 1

2

p∑
r=1

α
p
r

r−1∑
s=0

[(hB1)i−s + (hB1)i−s+r] , (̃b)
2pth
i+ 1

2
= 1

2

p∑
r=1

α
p
r

r−1∑
s=0

(bi−s + bi−s+r) ,

where the linear combination coefficients are the same as those in the “high-order accurate EC flux” (3.8). Similarly, it is 
not difficult to verify

1

	x

(
˜(hB1)

2pth

i+ 1
2

−˜(hB1)
2pth

i− 1
2

)
= ∂(hB1)

∂x

∣∣∣
i
+O(	x2p),

1

	x

(
(̃b)

2pth
i+ 1

2
− (̃b)

2pth
i− 1

2

)
= ∂b

∂x

∣∣∣
i
+O(	x2p).

Such treatment can also be found in [14].
In summary, by approximating (3.1), we obtain the following 2pth order semi-discrete EC scheme

d

dt
U i = − 1

	x

(
F̃

2pth
i+ 1

2
− F̃

2pth
i− 1

2

)
− �T

i

	x

(
˜(hB1)

2pth

i+ 1
2

− ˜(hB1)
2pth

i− 1
2

)
− (G1)

T
i

	x

(
(̃b)

2pth
i+ 1

2
− (̃b)

2pth
i− 1

2

)
, (3.9)

which satisfies the entropy identity (3.3) with the numerical entropy flux
8
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(̃q)
2pth
i+ 1

2
=

p∑
r=1

α
p
r

r−1∑
s=0

q̃(U i−s, U i−s+r).

It is a linear combination of the two-point numerical entropy flux (3.5). For example, when p = 3, the expression of the 
“6th-order accurate” EC flux is explicitly given as follows

F̃
6th
i+ 1

2
=3

2
F̃ 1(U i, U i+1) − 3

10

[
F̃ 1(U i−1, U i+1) + F̃ 1(U i, U i+2)

]
+ 1

30

[
F̃ 1(U i−2, U i+1) + F̃ 1(U i−1, U i+2) + F̃ 1(U i, U i+3)

]
. (3.10)

It can also be verified that the scheme (3.9) is well-balanced in the sense of Theorem 3.3, since the numerical fluxes 
and the numerical source terms in (3.9) are formed by the linear combinations of the fluxes and the source terms in the 
second-order scheme (3.2) with the same coefficients, specifically, the second equation in (3.9) is written as follows

d

dt
(hv1)i = − g

2	x

p∑
r=1

α
p
r

[hi+r + hi

2
((h + b)i+r − (h + b)i) + hi + hi−r

2
((h + b)i − (h + b)i−r)

]
.

For the 1D moving equilibrium states discussed in Remark 3.5, one needs to impose very restrictive conditions

(hi + hi±r) ((v1)i + (v1)i±r) ≡ C1, ∀i, r = 1, · · · , p,

pi = (v1)
2
i /2 + g(hi + bi) ≡ C2, ∀i.

3.3. ES schemes

It is known that for the quasi-linear hyperbolic conservation laws or balance laws, the entropy identity is available only if 
the solution is smooth. In other words, the entropy is not conserved if the discontinuities such as the shock waves appear in 
the solution. Moreover, the EC scheme may produce serious unphysical oscillations near the discontinuities. Those motivate 
us to develop the ES scheme in this section by adding a suitable dissipation term to the EC scheme to avoid the unphysical 
oscillations produced by the EC scheme and to satisfy the entropy inequality for the given entropy pair.

Following [46], adding a dissipation term to the EC flux F̃ i+ 1
2

gives the ES flux

F̂ i+ 1
2

= F̃ i+ 1
2

− 1

2
D i+ 1

2
�V �i+ 1

2
, (3.11)

satisfying

�V �T · F̂ i+ 1
2

− �ψ1� + ���{{hB1}} − g�hbv1� + g�hv1�{{b}}� 0, (3.12)

where D i+ 1
2

is a symmetric positive semi-definite matrix. It is easy to prove that the scheme (3.2) or (3.9) with the numer-

ical flux (3.11) is ES, i.e., satisfying the semi-discrete entropy inequality

d

dt
η(U i(t)) + 1

	x

(̂
qi+ 1

2
(t) − q̂i− 1

2
(t)

)
� 0,

for some numerical entropy flux function ̂qi+ 1
2

consistent with the physical entropy flux q1.

Motivated by the Cholesky decomposition and the dissipation term in the (local) Lax-Friedrichs flux

−1

2
αi+ 1

2
�U �i+ 1

2
≈ −1

2
αi+ 1

2

∂U

∂V

∣∣∣
i+ 1

2

�V � = −1

2
αi+ 1

2
R i+ 1

2
RT

i+ 1
2
�V �,

the matrix D i+ 1
2

in (3.11) can be chosen as

D i+ 1
2

= αi+ 1
2

R i+ 1
2

RT
i+ 1

2
.

Here αi+ 1
2

= maxm=i,i+1

{
|(vn

1)m| +
√

ghn
m + (Bn

1)
2
m

}
and R R T is the Cholesky decomposition of the matrix 

∂U

∂V
with

R =

⎛⎜⎜⎜⎜⎜⎜⎝

1/
√

g 0 0 0 0

v1/
√

g
√

h 0 0 0

v2/
√

g 0
√

h 0 0

B1/
√

g 0 0
√

h 0

B /
√

g 0 0 0
√

h

⎞⎟⎟⎟⎟⎟⎟⎠ ,
2

9
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and αi+ 1
2

and R i+ 1
2

are calculated by using the arithmetic mean values { {h} }i+ 1
2

, { {v} }i+ 1
2

, and { {B} }i+ 1
2

.

To obtain the arbitrary high-order accurate ES scheme, the dissipation term in (3.11) has to be improved. For example, 
it can be done by using the ENO reconstruction of the scaled entropy variables w = RT V [21]. More specifically, use the 
kth-order accurate ENO reconstruction of w to obtain the left and right limit values at xi+ 1

2
, denoted by w−

i+ 1
2

and w+
i+ 1

2
, 

and then define

〈〈w〉〉i+ 1
2

= w+
i+ 1

2
− w−

i+ 1
2
.

Combining such reconstructed jump with the “2pth-order EC flux” F̃
2pth

and the 2pth-order discretization of the source 
terms gives the kth-order ES scheme as follows

d

dt
U i = − 1

	x

(
F̂

kth
i+ 1

2
− F̂

kth
i− 1

2

)
− �T

i

	x

(
˜(hB1)

2pth

i+ 1
2

−˜(hB1)
2pth

i− 1
2

)
− (G1)

T
i

	x

(
(̃b)

2pth
i+ 1

2
− (̃b)

2pth
i− 1

2

)
, (3.13)

where p = k/2 for even k and p = (k + 1)/2 for odd k, and

F̂
kth
i+ 1

2
= F̃

2pth
i+ 1

2
− 1

2
αi+ 1

2
R i+ 1

2
〈〈w〉〉i+ 1

2
. (3.14)

The semi-discrete numerical schemes (3.13) is ES if the reconstruction satisfies the “sign” property [21]

sign(〈〈w〉〉i+ 1
2
) = sign(�w�i+ 1

2
),

which does hold for the ENO reconstructions [22].
Moreover, one can also obtain higher-order accurate ES scheme with the WENO reconstruction instead of the ENO recon-

struction, if the same number of candidate points values are used. For example, perform the fifth-order WENO reconstruc-
tion [6] respectively based on {w j = R i+ 1

2
V j, j = i − 2, i − 1, i, i + 1, i + 2} and {w j = R i+ 1

2
V j, j = i − 1, i, i + 1, i + 2, i + 3}

to obtain w−,WENO
i+ 1

2
and w+,WENO

i+ 1
2

, so that the “high-order WENO” dissipation term is easily given by − 1
2 αi+ 1

2
R i+ 1

2
〈 〈w〉 〉i+ 1

2

with 〈 〈w〉 〉i+ 1
2

:= w+,WENO
i+ 1

2
− w−,WENO

i+ 1
2

. However, in view of that the WENO reconstruction may not satisfy the “sign” prop-

erty, following [5] such “high-order WENO” dissipation term may be modified as follows

F̂
kth
i+ 1

2
= F̃

2pth
i+ 1

2
− 1

2
αi+ 1

2
S i+ 1

2
R i+ 1

2
〈〈w〉〉i+ 1

2
, (3.15)

where S l
i+ 1

2
is a switch function defined by

S l
i+ 1

2
=

{
1, if sign(〈〈w〉〉l

i+ 1
2
) = sign(�w�l

i+ 1
2
) �= 0,

0, otherwise,

here the superscript l denotes the lth entry of the diagonal matrix S i+ 1
2

or the lth component of the jump of w . The 
following theorem shows that the high-order accurate scheme with the “high-order WENO” dissipation term (3.15) is ES.

Theorem 3.4. The high-order accurate scheme (3.13) is ES, i.e., its solutions satisfy

d

dt
η(U i(t)) + 1

	x

(̂
qkth

i+ 1
2
(t) − q̂kth

i− 1
2
(t)

)
� 0,

where the numerical entropy flux is

q̂kth
i+ 1

2
= q̃2pth

i+ 1
2

− 1

2
αi+ 1

2
{{V }}T

i+ 1
2

R i+ 1
2

S i+ 1
2
〈〈w〉〉i+ 1

2
.

Proof. Left multiplying (3.13) by V T
i gives

d

dt
η(U i) = − 1

	x

(̃
q2pth

i+ 1
2

− q̃2pth
i− 1

2

)
+ 1

2	x

(
αi+ 1

2
V T

i R i+ 1
2

S i+ 1
2
〈〈w〉〉i+ 1

2
− αi− 1

2
V T

i R i− 1
2

S i− 1
2
〈〈w〉〉i− 1

2

)
= − 1

(̂
qkth

i+ 1 − q̂kth
i− 1

)

	x 2 2

10
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− 1

4	x

(
αi+ 1

2
�V �T

i+ 1
2

R i+ 1
2

S i+ 1
2
〈〈w〉〉i+ 1

2
+ αi− 1

2
�V �T

i− 1
2

R i− 1
2

S i− 1
2
〈〈w〉〉i− 1

2

)
= − 1

	x

(̂
qkth

i+ 1
2

− q̂kth
i− 1

2

)
− 1

4	x

(
αi+ 1

2
�w�T

i+ 1
2

S i+ 1
2
〈〈w〉〉i+ 1

2
+ αi− 1

2
�w�T

i− 1
2

S i− 1
2
〈〈w〉〉i− 1

2

)
.

Due to the choice of the diagonal switch matrix, �w�T
i± 1

2
S i± 1

2
〈 〈w〉 〉i± 1

2
� 0, so that the second term at the right-hand side 

of the above identity is not positive and then

d

dt
η(U i(t)) + 1

	x

(̂
qkth

i+ 1
2
(t) − q̂kth

i− 1
2
(t)

)
� 0. �

Remark 3.6. At the steady state, the entropy variables V T become (gC,0,0,0,0), so that the low-order dissipation term 
with �V � and the high-order dissipation term with 〈 〈w〉 〉 = R〈 〈V 〉 〉 all vanish. Thus the constructed ES schemes are well-
balanced.

3.4. Time discretization

This paper uses the following third-order accurate strong stability preserving explicit Runge-Kutta (RK3) time discretiza-
tion

U (1) = U n + 	t L(U n),

U (2) = 3

4
U n + 1

4

(
U (1) + 	t L(U (1))

)
,

U n+1 = 1

3
U n + 2

3

(
U (2) + 	t L(U (2))

)
,

(3.16)

to integrate in time the semi-discrete schemes (3.2), (3.9) or (3.13), where [L(U )] corresponds to their right-hand side.

3.5. Positivity-preserving ES schemes

This section restricts to the flat bottom topography. Generally, the high-order ES scheme (3.13) integrated with the RK3 
(3.16) may numerically produce the negative water height so that the numerical simulation fails. This section develops a 
high-order positivity-preserving ES scheme based on (3.13) satisfying hn+1

i > ε, ∀i, if hn
i > ε, ∀i for a small positive number 

ε (usually taken as 10−13 in numerical tests), which means there is no dry area in the solutions. It is built on the fact that 
the first-order accurate Lax-Friedrichs scheme is positivity-preserving and ES.

Lemma 3.5 (Positivity). The semi-discrete scheme (3.2) discretized with the forward Euler time discretization and the local Lax-
Friedrichs flux

F̂
L F
i+ 1

2
= {{F 1}}i+ 1

2
− αi+ 1

2
�U �i+ 1

2
/2, αi+ 1

2
= max

m=i,i+1

{
|(vn

1)m| +
√

ghn
m + (Bn

1)
2
m

}
, (3.17)

is positivity-preserving under the CFL condition

	t = μ	x

max
i

{
|(v1)i| +

√
ghi + (B1)

2
i

} , μ� 1

2
. (3.18)

Proof. The first component of the Lax-Friedrichs scheme can be split as

hn+1
i =: 1

2

(
h+,LF

i + h−,LF
i

)
, h±,LF

i = hn
i ∓ 2	t

	x
h( F̂

L F
i± 1

2
),

where h( F̂ ) denotes the first component of the vector F̂ , so it holds

h±,LF
i = hn

i

(
1 − 	t

	x

(
αi± 1

2
± (v1)

n
i

))
+ 	t

	x
hn

i±1

(
αi± 1

2
∓ (v1)

n
i±1

)
.

Thus h±,LF
> 0 under the CFL condition (3.18), and then hn+1 > 0. �
i i

11



J. Duan and H. Tang Journal of Computational Physics 431 (2021) 110136
The following lemma shows that the Lax-Friedrichs flux (3.17) is ES even if hB1 or hB2 is not constant. Its proof is direct 
without the assumption that the 1D exact Riemann solution of x-split system is ES. In fact, when there are jumps in hB1 or 
hB2 at the cell interface in the 2D case, whether such assumption is available needs further investigation.

Lemma 3.6 (ES). The Lax-Friedrichs flux is ES when the bottom topography is flat.

Proof. Substituting the Lax-Friedrichs flux into the inequality (3.12) and using identity (3.7) gives

�V �T · F̂
LF − �ψ1� + ���{{hB1}}

=g{{hv1}}�h� − gα

2
�h�2 + g

2
{{h2}}�v1� − g

2
�h2 v1�

− 1

2
{{hv1}}�v2

1 + v2
2 + B2

1 + B2
2� + α

4
�h��v2

1 + v2
2 + B2

1 + B2
2�

+ {{hv2
1 − hB2

1}}�v1� + {{hv1v2 − hB1 B2}}�v2� − α

2
�hv1��v1� − α

2
�hv2��v2�

+ {{hv1 B1 − hB1 v1}}�B1� + {{hv1 B2 − hB1 v2}}�B2� − α

2
�hB1��B1� − α

2
�hB2��B2�

+ �v1 B1 + v2 B2�{{hB1}}
=g

(
({{hv1}} − {{h}}{{v1}})�h� − α

2
�h�2

)
− α

2
{{h}}

(
�v1�2 + �v2�2 + �B1�2 + �B2�2

)
+ ({{hv2

1}} − {{hv1}}{{v1}})�v1� + ({{hv1v2}} − {{hv1}}{{v2}})�v2�

+ ({{hv1 B1}} − {{hv1}}{{B1}})�B1� + ({{hv1 B2}} − {{hv1}}{{B2}})�B2�

− ({{hB2
1}} − {{hB1}}{{B1}})�v1� − ({{hB1 B2}} − {{hB1}}{{B2}})�v2�

− ({{hB1 v1}} − {{hB1}}{{v1}})�B1� − ({{hB1 v2}} − {{hB1}}{{v2}})�B2�.

It can be further simplified by using the identity { {ab} } − { {a} }{ {b} } = 1
4 �a��b� as follows

�V �T · F̂
LF − �ψ1� + ���{{hB1}}

= g

4
�h�2

(
�v1�2 − α

)
− 1

2
�hB1�

(
�v1��B1� + �v2��B2�

)
+

(
1

4
�hv1� − α

2
{{h}}

)(
�v1�2 + �v2�2 + �B1�2 + �B2�2

)
+ ({{hv2

1}} − {{hv1}}{{v1}})�v1� + ({{hv1v2}} − {{hv1}}{{v2}})�v2�

�A+ B + C,

where

A = g

4
�h�2 (�v1� − 2α

)
,

B = 1

4

(
�v1�2 + �B1�2

)(
�hv1� − 2α{{h}})− 1

2
�hB1��v1��B1�,

C = 1

4

(
�v2�2 + �B2�2

)(
�hv1� − 2α{{h}})− 1

2
�hB1��v2��B2�.

Since α = max
{|(v1)L | +

√
ghL + (B1)

2
L , |(v1)R | +

√
ghR + (B1)

2
R

}
, it is easy to obtain

�v1� � 2α, (v1 ± B1)L,R � α,

then A � 0.
If �hB1� � 0, then B � 0, because

�h(v1 + B1)� − 2α{{h}} = hR [(v1 + B1)R − α] − hL [(v1 + B1)L + α] � 0,

and
12
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B = 1

4

(
�v1�2 + �B1�2

)(
�h(v1 + B1)� − 2α{{h}})− (

�v1� + �B1�
)2

�hB1�;
otherwise, it still holds that B � 0, because

�h(v1 − B1)� − 2α{{h}} = hR [(v1 − B1)R − α] − hL [(v1 − B1)L + α] � 0,

and

B = 1

4

(
�v1�2 + �B1�2

)(
�h(v1 − B1)� − 2α{{h}})+ (

�v1� − �B1�
)2

�hB1�.

Similarly, C � 0. Therefore the Lax-Friedrichs flux is ES. �
Based on those conclusions, the high-order positivity-preserving ES schemes can be constructed by using the Lax-

Friedrichs flux and the positivity-preserving limiter [27] at each stage in the RK3 (3.16). Since such RK3 is a convex 
combination of the forward Euler scheme, only the forward Euler scheme is considered below. The limited numerical flux 
F̂

kth,PP
i+ 1

2
is given by

F̂
kth,PP
i+ 1

2
= θi+ 1

2
F̂

kth
i+ 1

2
+ (1 − θi+ 1

2
) F̂

LF
i+ 1

2
, (3.19)

where θi+ 1
2

= min{θ+
i+ 1

2
, θ−

i+ 1
2
} ∈ [0, 1] is the scaling factor corresponding to the two neighboring grid points, which share 

the same flux F̂
kth
i+ 1

2
, and

θ±
i+ 1

2
=

⎧⎪⎨⎪⎩
(

h±,LF
i+ 1

2 ∓ 1
2

− ε

)
/

(
h±,LF

i+ 1
2 ∓ 1

2
− h±,kth

i+ 1
2 ∓ 1

2

)
, if h±,kth

i+ 1
2 ∓ 1

2
< ε,

1, otherwise.

(3.20)

Notice that the discretization of the source terms should also be replaced by the corresponding convex combinations as 
follows

˜(hB1)
2pth,PP

i+ 1
2

= θi+ 1
2

˜(hB1)
2pth

i+ 1
2

+ (1 − θi+ 1
2
){{hB1}}i+ 1

2
.

It is easy to verify that the water height updated by the high-order positivity-preserving ES schemes satisfies

hn+1
i = 1

2

(
hn

i − 2	t

	x
h( F̂

kth,PP
i+ 1

2
)

)
+ 1

2

(
hn

i + 2	t

	x
h( F̂

kth,PP
i− 1

2
)

)
= 1

2

[
θi+ 1

2
h+,kth

i + (1 − θi+ 1
2
)h+,LF

i

]
+ 1

2

[
θi− 1

2
h−,kth

i + (1 − θi− 1
2
)h−,LF

i

]
> ε,

and the limited flux F̂
kth,PP
i+ 1

2
is consistent and ES since it is a convex combination of the high-order ES flux and the ES 

Lax-Friedrichs flux, and does not destroy the high-order accuracy∣∣∣∣∣∣ F̂
kth,PP
i+ 1

2
− F̂

kth
i+ 1

2

∣∣∣∣∣∣� (1 − θi+ 1
2
)

∣∣∣∣∣∣ F̂
LF
i+ 1

2
− F̂

kth
i+ 1

2

∣∣∣∣∣∣ ,
with 1 − θi+ 1

2
=O(	xk) [27].

The above proof of the accuracy preservation requires the assumption that the water height is strictly positive, i.e. 

h > ε > 0, and the stronger CFL condition CFL � ŵ

2
<

1

2
, also see the discussion in [27] on the accuracy. If the parametrized 

flux limiter proposed in [56,58] is employed, then the resulting positivity-preserving scheme may relax the restriction on 
the time step size 	t because the parametrized flux limiter is only performed at the final stage of the Runge-Kutta time 
discretization, but its accuracy preservation can be only tested in the numerical experiments. Rewrite the final stage of the 
RK3 (3.16) as

U n+1
i = U n

i − 	t

	x

(
F̂

rk
i+ 1

2
− F̂

rk
i− 1

2

)
+ 	t

	x

(
H̃

rk
i+ 1

2
− H̃

rk
i− 1

2

)
, (3.21)

where

F̂
rk
i+ 1

2
= 1

6

(
F̂

kth,n
i+ 1

2
+ F̂

kth,(1)

i+ 1
2

+ 4 F̂
kth,(2)

i+ 1
2

)
,

Ĥ
rk
i+ 1

2
= 1

6

(
�n

i
˜(hB1)

2pth,n

i+ 1
2

+ �
(1)
i

˜(hB1)
2pth,(1)

i+ 1
2

+ 4�
(2)
i

˜(hB1)
2pth,(2)

i+ 1
2

)
.

13
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Combining (3.21) with the Lax-Friedrichs flux (3.17) gives the final positivity-preserving scheme

U n+1
i = U n

i − 	t

	x

(
F̂

kth,PP
i+ 1

2
− F̂

kth,PP
i− 1

2

)
+ 	t

	x

(
H̃

kth,PP
i+ 1

2
− H̃

kth,PP
i− 1

2

)
,

with the limited numerical fluxes F̂
kth,PP
i+ 1

2
, ̃Hkth,PP

i+ 1
2

given by

F̂
kth,PP
i+ 1

2
= θi+ 1

2
F̂

rk
i+ 1

2
+ (1 − θi+ 1

2
) F̂

LF
i+ 1

2
,

H̃
kth,PP
i+ 1

2
= θi+ 1

2
H̃

rk
i+ 1

2
+ (1 − θi+ 1

2
)H̃

LF
i+ 1

2
.

(3.22)

Here Ĥ
LF
i+ 1

2
= �n

i { {hB1} }n
i+ 1

2
and the parametrized flux limiter {θi+ 1

2
} satisfies (θi− 1

2
, θi+ 1

2
) ∈ [0, − 1

2 ,i] × [0, + 1
2 ,i] with a 

parameter pair (− 1
2 ,i, + 1

2 ,i) and the inequality

hn+1
i = hn

i − 	t

	x

(
h( F̂

kth,PP
i+ 1

2
) − h( F̂

kth,PP
i− 1

2
)
)

> 0,

i.e.

hn+1
i = − 	t

	x
θi+ 1

2

(
h( F̂

kth
i+ 1

2
) − h( F̂

LF
i+ 1

2
)
)

+ 	t

	x
θi− 1

2

(
h( F̂

kth
i− 1

2
) − h( F̂

LF
i− 1

2
)
)

+ τi > 0, (3.23)

with τi = hn
i − 	t

	x

(
h( F̂

LF
i+ 1

2
) − h( F̂

LF
i− 1

2
)
)

> 0. Define Q i+ 1
2

:= F̂
kth
i+ 1

2
− F̂

LF
i+ 1

2
, Q i− 1

2
:= F̂

kth
i− 1

2
− F̂

LF
i− 1

2
. To satisfy the inequality 

(3.23), the parameter pair (− 1
2 ,i, + 1

2 ,i) is chosen as follows:

(a) If h( Q i− 1
2
) � 0 and h( Q i+ 1

2
) � 0, then (− 1

2 ,i, + 1
2 ,i) = (1, 1);

(b) If h( Q i− 1
2
) � 0 and h( Q i+ 1

2
) > 0, then (− 1

2 ,i, + 1
2 ,i) = (1, min(1, 

τi

	t/	xh( Q i+ 1
2
)
));

(c) If h( Q i− 1
2
) < 0 and h( Q i+ 1

2
) � 0, then (− 1

2 ,i, + 1
2 ,i) = (min(1, 

τi

−	t/	xh( Q i− 1
2
)
), 1);

(d) If h( Q i− 1
2
) < 0 and h( Q i+ 1

2
) > 0,

then (− 1
2 ,i, + 1

2 ,i) = (1, 1), if θi− 1
2

= θi+ 1
2

= 1 satisfies (3.23);

otherwise (− 1
2 ,i, + 1

2 ,i) = (
τi

	t/	x(h( Q i+ 1
2
) − h( Q i− 1

2
))

, 
τi

	t/	x(h( Q i+ 1
2
) − h( Q i− 1

2
))

).

The final parametrized flux limiter θi+ 1
2

is defined as

θi+ 1
2

= min(+ 1
2 ,i,− 1

2 ,i+1) (3.24)

for conservation.
The above positivity-preserving flux limiters are directly applied to the fully discrete scheme and do not destroy the 

entropy stability, thus the fully discrete positivity-preserving scheme with the limited flux (3.19) or (3.22) is ES if the fully 
discrete scheme is ES.

4. Two-dimensional schemes

This section extends the 1D high-order EC and ES schemes developed in Section 3 to the 2D SWMHD system (1.1). For 
convenience, the notation (x1, x2) is replaced with (x, y). Our attention is limited to a uniform Cartesian mesh {(xi, y j), i =
1, · · · , Nx, j = 1, · · · , N y} with the spatial step sizes 	x, 	y so that the extension of the 1D schemes to (1.1) can be done 
by approximating (2.4) in a dimension by dimension fashion. To avoid repetition, the detailed extension is not described 
below.

At each grid point (xi, y j), i = 1, · · · , Nx, j = 1, · · · , N y , the 2D SWMHD system (1.1) can be approximated by the 
following second-order accurate well-balanced semi-discrete EC scheme

d

dt
U i, j + 1

	x

(
F̃ 1,i+ 1

2 , j − F̃ 1,i− 1
2 , j

)
+ 1

	y

(
F̃ 2,i, j+ 1

2
− F̃ 2,i, j− 1

2

)
=

− �T
i, j

{{hB1}}i+ 1
2 , j − {{hB1}}i− 1

2 , j

	x
− �T

i, j

{{hB2}}i, j+ 1
2

− {{hB2}}i, j− 1
2

	y

− (G1)
T
i, j

{{b}}i+ 1
2 , j − {{b}}i− 1

2 , j

	x
− (G2)

T
i, j

{{b}}i, j+ 1
2

− {{b}}i, j− 1
2

	y
, (4.1)
14
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where G2 = (0, 0, gh, 0, 0)T, and F̃ 1,i± 1
2 , j and F̃ 2,i, j± 1

2
are the x- and y-directional EC fluxes, respectively.

Similarly, using the EC scheme (4.1) as building block can give a 2pth-order well-balanced semi-discrete EC scheme for 
the 2D SWMHD system (1.1) as follows

d

dt
U i, j + 1

	x

(
F̃

2pth
1,i+ 1

2 , j
− F̃

2pth
1,i− 1

2 , j

)
+ 1

	y

(
F̃

2pth
2,i, j+ 1

2
− F̃

2pth
2,i, j− 1

2

)
=

− �T
i, j

	x

(
˜(hB1)

2pth

i+ 1
2 , j −˜(hB1)

2pth

i− 1
2 , j

)
− �T

i, j

	y

(
˜(hB2)

2pth

i, j+ 1
2

− ˜(hB2)
2pth

i, j− 1
2

)

− (G1)
T
i, j

	x

(
(̃b)

2pth
i+ 1

2 , j
− (̃b)

2pth
i− 1

2 , j

)
− (G2)

T
i, j

	y

(
(̃b)

2pth
i, j+ 1

2
− (̃b)

2pth
i, j− 1

2

)
, (4.2)

where

F̃
2pth
1,i+ 1

2 , j
=

p∑
r=1

α
p
r

r−1∑
s=0

F̃ 1(U i−s, j, U i−s+r, j),

F̃
2pth
2,i, j+ 1

2
=

p∑
r=1

α
p
r

r−1∑
s=0

F̃ 2(U i, j−s, U i, j−s+r),

(h̃B1)
2pth
i+ 1

2 , j
= 1

2

p∑
r=1

α
p
r

r−1∑
s=0

[
(hB1)i−s, j + (hB1)i−s+r, j

]
,

(h̃B2)
2pth
i, j+ 1

2
= 1

2

p∑
r=1

α
p
r

r−1∑
s=0

[
(hB2)i, j−s + (hB2)i, j−s+r

]
,

(̃b)
2pth
i+ 1

2 , j
= 1

2

p∑
r=1

α
p
r

r−1∑
s=0

(
bi−s, j + bi−s+r, j

)
,

(̃b)
2pth
i, j+ 1

2
= 1

2

p∑
r=1

α
p
r

r−1∑
s=0

(
bi, j−s + bi, j−s+r

)
.

Then adding a suitable dissipation term to (4.2) gives a kth-order well-balanced semi-discrete ES scheme for the 2D SWMHD 
system (1.1) as follows

d

dt
U i, j + 1

	x

(
F̂

kth
1,i+ 1

2 , j − F̂
kth
1,i− 1

2 , j

)
+ 1

	y

(
F̂

kth
2,i, j+ 1

2
− F̂

kth
2,i, j− 1

2

)
=

− �T
i, j

	x

(
˜(hB1)

2pth

i+ 1
2 , j −˜(hB1)

2pth

i− 1
2 , j

)
− �T

i, j

	y

(
˜(hB2)

2pth

i, j+ 1
2

− ˜(hB2)
2pth

i, j− 1
2

)

− (G1)
T
i, j

	x

(
(̃b)

2pth
i+ 1

2 , j
− (̃b)

2pth
i− 1

2 , j

)
− (G2)

T
i, j

	y

(
(̃b)

2pth
i, j+ 1

2
− (̃b)

2pth
i, j− 1

2

)
, (4.3)

where p = k/2 for even k and p = (k + 1)/2 for odd k,

F̂
kth
1,i+ 1

2 , j = F̃
2pth
1,i+ 1

2 , j
− 1

2
αi+ 1

2 , j S i+ 1
2 , j R i+ 1

2 , j〈〈w〉〉i+ 1
2 , j,

F̂
kth
2,i, j+ 1

2
= F̃

2pth
2,i, j+ 1

2
− 1

2
αi, j+ 1

2
S i, j+ 1

2
R i, j+ 1

2
〈〈w〉〉i, j+ 1

2
,

the jumps 〈 〈w〉 〉i+ 1
2 , j, 〈 〈w〉 〉i, j+ 1

2
are respectively obtained by using the WENO reconstruction in the x- and y-directions, and 

the viscosities αi+ 1
2 , j and αi, j+ 1

2
are respectively chosen in x- and y-directions.

For the time discretization, the third-order Runge-Kutta scheme (3.16) is used. The analysis of the EC, ES, and well-
balanced properties of the above 2D EC and ES schemes is similar to the 1D case, so that it is omitted here. Moreover, the 
ES property of the Lax-Friedrichs flux can also be used to develop the 2D positivity-preserving ES schemes by using the 
positivity-preserving flux limiters.
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Table 5.1
Example 5.1: Errors and orders of convergence in v2 at t = 1.

Nx EC scheme ES scheme

�1 error order �∞ error order �1 error order �∞ error order

10 1.575e-04 - 2.433e-04 - 1.126e-03 - 1.605e-03 -
20 2.706e-06 5.86 4.181e-06 5.86 3.015e-05 5.22 5.303e-05 4.92
40 4.276e-08 5.98 6.690e-08 5.97 9.048e-07 5.06 1.486e-06 5.16
80 6.700e-10 6.00 1.051e-09 5.99 2.830e-08 5.00 4.492e-08 5.05
160 1.050e-11 6.00 1.650e-11 5.99 8.852e-10 5.00 1.393e-09 5.01

5. Numerical results

This section conducts some numerical experiments to validate the performance of our EC and ES schemes for the 
SWMHD equations (1.1) and its x-split system. Unless otherwise stated, all computations take the CFL number μ as 0.5, 
and the 5th-order schemes with the fifth-order WENO reconstruction in [6]. For the accuracy tests, the time stepsize 	t is 
taken as μ	x6/3 (resp. μ	x5/3) for the 6th order EC schemes (resp. the 5th order ES schemes) to make the spatial error 
dominant.

5.1. One-dimensional case

Example 5.1 (Accuracy test). This example is used to verify the accuracy. The computational domain is [0, 1] with periodic 
boundary conditions, and g = 1. The constructed exact solution is given as follows

h(x, t) = 1, v1(x, t) = 0, v2(x, t) = sin(2π(x + t)), B1(x, t) = 1, B2(x, t) = v2(x, t).

Table 5.1 lists the errors and the orders of convergence in v2 at t = 1 obtained by using our EC and ES schemes. It is 
seen that those schemes get the sixth-order and the fifth-order accuracy as expected.

Example 5.2 (Well-balanced test [59]). It is used to verify the well-balanced property of our EC and ES schemes. The bottom 
topography is taken as a smooth function

b(x) = 0.2e−(x+1)2/2 + 0.3e−(x−1.5)2
, (5.1)

or a discontinuous function

b(x) = 0.5χ[−4,4], (5.2)

and then the initial data are specified as h(x) = 1 − b(x), v1 = 0, and B = 0. The computational domain is [−10, 10], and 
the problem is numerically solved until t = 10 with Nx = 40 and g = 1.

The surface level h + b and the bottom b are shown in Fig. 5.1, and the errors in h and v1 are given in Table 5.2. It 
can be seen that the errors are at the level of round-off errors for the double precision, and the well-balanced property is 
verified.

Example 5.3 (Steady state problem with wavy bottom [59]). This example is adapted from the problem in [57] and used to 
check the dissipative and dispersive errors in the ES scheme. The computational domain and the bottom topography are the 
same as the last problem, g = 9.812, and the initial data are

(h, v1, v2, B1, B2) =
{

(1, 1, 0, 0.05, 0), x < 0,

(1, 1, 0, 0.1, 0.1), x > 0.

The results obtained by using the ES scheme with Nx = 50, 100 are shown in Fig. 5.2, and the reference solutions are 
obtained by using the ES scheme with Nx = 1000. We can see that the accurate solutions can be obtained even with the 
coarse mesh Nx = 50.

Example 5.4 (Small perturbation of a steady state). To examine the ability of capturing small perturbation of a steady state, 
consider two quasi-stationary problems. The first problem is considered in [34,55]. The bottom topography consists of one 
hump
J. Duan and H. Tang Journal of Computational Physics 431 (2021) 110136
16



J. Duan and H. Tang Journal of Computational Physics 431 (2021) 110136

Fig. 5.1. Example 5.2: The symbols “�” and “◦” denote the numerical solutions at t = 10 obtained by using the EC and the ES schemes with Nx = 40, 
respectively.

Table 5.2
Example 5.2: Errors in h and v1 at t = 10 for the bottom topography (5.1) and (5.2).

EC scheme ES scheme

�1 error �∞ error �1 error �∞ error

(5.1)
h 9.825e-16 2.554e-15 1.035e-15 2.554e-15
v1 5.463e-16 1.636e-15 5.902e-16 1.638e-15

(5.2)
h 2.484e-16 1.776e-15 2.262e-16 8.882e-16
v1 2.445e-16 2.046e-15 2.309e-16 1.617e-15

Fig. 5.2. Example 5.3: Left: The bottom topography and the reference solutions obtained by using the ES scheme with Nx = 1000. Right: The enlarged view 
of the numerical solutions obtained by using the ES schemes with Nx = 50 (“�”) and Nx = 100 (“◦”), respectively.
17
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Fig. 5.3. Example 5.4: The surface level h + b and the discharge hv1 obtained by using the ES scheme with Nx = 200. The solid lines denote the reference 
solutions obtained by using the ES schemes with Nx = 3000.

Fig. 5.4. Same as Fig. 5.3 except for hB1 = 1.

b(x) =
{

0.25(cos(10π(x − 1.5)) + 1), if 1.4 < x < 1.6,

0, otherwise,

and the initial data are

h =
{

1 − b(x) + ε, if 1.1 < x < 1.2,

1 − b(x), otherwise,

with zero velocity and zero magnetic field. The second quasi-stationary problem takes into account the magnetic field such 
that hB1 = 1. Those problems are solved until t = 0.2 with the computational domain [0, 2], g = 9.812, and ε = 0.2, 0.001.

The results with zero magnetic field are shown in Fig. 5.3, while those with non-zero magnetic field are shown in Fig. 5.4. 
The solutions obtained by using the ES scheme with Nx = 200 are compared to the reference solutions obtained by using 
the ES scheme with a fine mesh of Nx = 3000. It can be seen that the structures in the solutions are well captured with no 
spurious oscillations, and the results with zero magnetic field are well comparable to those in [55].

Example 5.5 (Riemann problem [12]). The initial data are

(h, v1, v2, B1, B2) =
{

(1, 0, 0, 1, 0), x < 0,

(2, 0, 0, 0.5, 1), x > 0.

The initial discontinuity will be decomposed into two magnetogravity waves and two Alfvén waves propagating away in 
two directions as the time increases. The problem is solved until t = 0.4 with g = 1.

Fig. 5.5 presents the solutions h, v1, v2, B1, B2 at t = 0.4 obtained by the ES schemes with Nx = 100. One can see that 
our numerical solutions are in good agreement with the reference solutions, and the discontinuities are well captured 
without obvious oscillations.
18
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Fig. 5.5. Example 5.5: The solutions at t = 0.4 (“◦”) are obtained by the ES schemes with Nx = 100. The solid lines denote the reference solutions obtained 
by using the Lax-Friedrichs scheme with a fine mesh of Nx = 20000.

Table 5.3
Example 5.6: Errors and orders of convergence in h at t = 16 obtained by using the EC and ES schemes, hmax = 1.

Nx = N y EC scheme ES scheme

�1 error order �∞ error order �1 error order �∞ error order

20 4.079e-05 - 1.787e-02 - 3.756e-05 - 2.446e-02 -

40 7.025e-07 5.86 1.543e-03 3.53 4.082e-06 3.20 1.012e-02 1.27

80 6.401e-09 6.78 3.028e-05 5.67 1.015e-07 5.33 7.531e-04 3.75

160 5.244e-11 6.93 4.994e-07 5.92 1.582e-09 6.00 2.340e-05 5.01

320 4.143e-13 6.98 7.904e-09 5.98 2.453e-11 6.01 7.205e-07 5.02

5.2. Two-dimensional case

Example 5.6 (Vortex). This genuine 2D vortex problem is designed to test the accuracy and the positivity-preserving property 
of our schemes. With the aid of the SWMHD equations in the polar coordinates given in Appendix A, a steady vortex is 
constructed as follows

h′ = hmax −
(

v2
max − B2

max

)
e1−r2

/(2g),

(v ′
1, v ′

2) = vmaxe0.5(1−r2)(−y, x),

(B ′
1, B ′

2) = Bmaxe0.5(1−r2)(−y, x),

with vmax = 0.2, Bmax = 0.1, r = √
x2 + y2. Using the Galilean transformation x′ = x − t, y′ = y − t, t′ = t can give a time-

dependent exact solution

h(x, y, t) = h′(x − t, y − t, t), (v1, v2)(x, y, t) = (1,1) + (v ′
1, v ′

2)(x − t, y − t, t),

(B1, B2)(x, y, t) = (B ′
1, B ′

2)(x − t, y − t, t),

which describes a vortex moving with a constant speed (1, 1).

The computational domain is [−8, 8]2 with periodic boundary conditions, g = 1, hmax = 1, and the output time is t = 16
so that the vortex travels and returns to the original position after a period. Table 5.3 lists the errors in h and corresponding 
orders of convergence. The results show that our EC and ES schemes achieve the optimal convergence order. Fig. 5.6 plots 
the contours of h and the magnitude of the magnetic field |B| with 40 equally spaced contour lines. It can be seen that our 
schemes can preserve the shape of the vortex well after a whole period.

To check the positivity-preserving property, let us do a test with

hmax = 10−6 +
(

v2
max − B2

max

)
e/(2g),

which implies that the lowest water height is 10−6. The errors and orders of convergence obtained by using the ES scheme 
with the positivity-preserving (PP) limiters are listed in Table 5.4, where “PP limiter 1” denotes the flux limiter (3.20)
performed at each stage, and “PP limiter 2” denotes the parametrized flux limiter (3.24) performed at the final stage. The 
errors obtained by the ES scheme without the positivity-preserving limiter are omitted here, since it gives negative water 
height when Nx = 20, 40. One can see that both positivity-preserving flux limiters do not destroy the high-order accuracy.

Example 5.7 (Well-balanced test [34]). It is used to validate the well-balanced property of our EC and ES schemes. The bottom 
topography is taken as
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Fig. 5.6. Example 5.6: The contours of h (left) and |B| (right) at t = 16 obtained by using the ES scheme with Nx = N y = 320 and 40 equally spaced contour 
lines.

Table 5.4
Example 5.6: Errors and orders of convergence in h at t = 16 obtained by using the ES schemes, hmax = 10−6 + (

v2
max − B2

max

)
e/(2g).

Nx = N y With PP limiter 1 With PP limiter 2

�1 error order �∞ error order �1 error order �∞ error order

20 4.007e-05 - 2.680e-02 - 4.556e-05 - 2.903e-02 -

40 3.426e-06 3.55 7.087e-03 1.92 6.364e-06 2.84 1.174e-02 1.31

80 1.209e-07 4.82 2.657e-03 1.42 2.217e-07 4.84 3.824e-03 1.62

160 5.520e-09 4.45 9.224e-04 1.53 1.204e-08 4.20 7.533e-04 2.34

320 3.089e-11 7.48 1.703e-05 5.76 4.183e-11 8.17 1.443e-05 5.71

Table 5.5
Example 5.7: Errors in h, v1, v2 at t = 1 for the bottom topography (5.3) and (5.4).

EC scheme ES scheme

�1 error �∞ error �1 error �∞ error

(5.3) h 4.943e-15 3.886e-14 2.293e-15 1.077e-14

v1 5.091e-15 4.091e-14 2.577e-15 1.010e-14

v2 3.766e-15 3.168e-14 1.887e-15 9.742e-15

(5.4) h 8.437e-16 5.329e-15 8.102e-16 4.663e-15

v1 5.720e-16 4.585e-15 5.731e-16 3.792e-15

v2 1.385e-15 7.659e-15 1.367e-15 6.306e-15

b(x, y) = 0.8 exp(−5(x − 0.9)2 − 50(y − 0.5)2), (5.3)

or

b(x, y) = 0.5χ[0.5,1.5]×[0.25,0.75]. (5.4)

The computational domain is [0, 2] × [0, 1], g = 1, and the initial data are h(x, y) = 1 − b(x, y) with zero velocity and 
magnetic field.

The problem is solved until t = 1 with Nx = N y = 40. The errors in h, v1, v2 are listed in Table 5.5. Similar to Example 5.2, 
one can see that the well-balanced property of the 2D schemes has been verified in the sense that the errors are at the 
level of round-off errors for the double precision.
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Fig. 5.7. Example 5.8: The surface level h + b at t = 0.12, 0.24, 0.36, 0.48, 0.6 (From left to right, top to bottom) obtained by using the ES scheme with 
Nx = 600, N y = 300. 40 equally spaced contour lines are used.

Example 5.8 (Small perturbation of a steady state (without magnetic field) [34]). This problem is used to check the capability 
of the ES schemes for the perturbation of the steady state. The computational domain and the bottom topography are the 
same as the last test, and the initial data are

h =
{

1.01 − b(x), if 0.05 < x < 0.15,

1 − b(x), otherwise,

with zero velocity and magnetic field. Outflow boundary conditions are used and the problem is solved until t = 0.6 with 
g = 9.812.

Fig. 5.7 shows the contours of the surface level h + b (40 equally spaced contour lines) at t = 0.12, 0.24, 0.36, 0.48, 0.6
obtained by using the ES scheme with Nx = 600, N y = 300, which describe a right-going disturbance as it propagates past 
the hump. It can be seen that the complex small features are well captured without any spurious oscillations, and the 
results are comparable to those in [55].

Example 5.9 (Orszag-Tang like problem [59]). It is similar to the Orszag-Tang problem for the ideal MHD equations [39]. The 
computational domain is [0, 2π ]2 with periodic boundary conditions and g = 1. The initial data are

(h, v1, v2, B1, B2) = (25/9,− sin y, sin x,− sin y, sin 2x).

The solution of this problem is smooth initially, but the complicated pattern will arise as the time increases and it has 
the turbulence behavior. Fig. 5.8 presents the results obtained by using the ES scheme with Nx = N y = 200 at t = 1 and 2. 
The solutions are in good agreement with those in [59]. The left plot in Fig. 5.10 shows the time evolution of the discrete 
total entropy 

∑
i, j η(U i, j)	x	y with three spatial resolutions Nx = N y = 100, 200 and 400. The total entropy is conserved 

when the solutions are smooth during an initial period, but it decays when discontinuities arise.
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Fig. 5.8. Example 5.9: The contours of the height h and the magnitude of the magnetic field |B| at t = 1 (the 1st row) and 2 (the 2nd row) obtained by 
using the ES scheme with Nx = N y = 200. 40 equally spaced contour lines are used.

Example 5.10 (Rotor like problem [31]). It is an extension of the classical ideal MHD rotor test problem [31]. The computational 
domain is [−1, 1]2 with outflow conditions with g = 1. Initially hB1 = 1 and hB2 = 0, and there is a disk of radius r0 = 0.1
centered at (0, 0), where fluid with large h is rotating in the anti-clockwise direction. The ambient fluid is homogeneous for 
r > r0, where r = √

x2 + y2. Specifically, the initial data are

(h, v1, v2) =
{

(10,−y, x), r < r0,

(1, 0, 0), r > r0.

This problem is solved until t = 0.2.

Fig. 5.9 shows the height h, the velocity v , and the magnetic field B obtained by using the ES scheme with Nx = N y =
400. The ES scheme gets the high resolution results without obvious spurious oscillations comparable to those in [31]. The 
right plot of Fig. 5.10 displays the time evolution of the discrete total entropy with three spatial resolutions Nx = N y = 100, 
200 and 400. The results show that the total entropy decays as expected, and the fully discrete scheme is also ES.
J. Duan and H. Tang Journal of Computational Physics 431 (2021) 110136
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Fig. 5.9. Example 5.10: The contours of the h, v1, v2, B1, B2 at t = 0.2 obtained by using the ES scheme with Nx = N y = 400. 40 equally spaced contour 
lines are used.
23
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Fig. 5.10. The time evolution of the discrete total entropy for Example 5.9 and 5.10 with several different resolutions in space.

6. Conclusion

The paper proposed the high-order accurate entropy stable (ES) finite difference schemes for the one- and two-
dimensional shallow water magnetohydrodynamic (SWMHD) equations with non-flat bottom topography. The Janhunen 
source term was added to the conservative SWMHD equations. For the modified SWMHD equations, the second-order accu-
rate well-balanced semi-discrete entropy conservative (EC) finite difference scheme was first constructed, in the sense that it 
satisfied the semi-discrete entropy identity for the given entropy pair (the total energy served as the mathematical entropy) 
and preserved the steady state of lake at rest (with zero magnetic field). The key was to match both discretizations for the 
fluxes and the source term related to the non-flat river bed bottom and the Janhunen source term, and to find the affordable 
EC fluxes of the second-order EC schemes. Next, the high-order accurate well-balanced EC schemes were obtained by using 
the second-order accurate EC schemes as building block. In view of that the EC schemes might become oscillatory near the 
discontinuities, the appropriate dissipation terms were added to the EC fluxes to develop the semi-discrete well-balanced 
ES schemes satisfying the semi-discrete entropy inequality. The WENO reconstruction of the scaled entropy variables and 
the high-order explicit Runge-Kutta time discretization were implemented to obtain the fully-discrete high-order schemes. 
The ES and positivity-preserving properties of the Lax-Friedrichs scheme were also proved without the assumption that 
the 1D exact Riemann solution of x-split system was ES, and then the high-order positivity-preserving ES schemes were 
developed by using the positivity-preserving flux limiters. Extensive numerical tests showed that our schemes could achieve 
the designed accuracy, were well-balanced or positivity-preserving, and could well capture the discontinuities.
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Appendix A. SWMHD in polar coordinates

In the polar coordinate system (r, θ), the modified SWMHD equations (2.4) without the bottom topography become

∂h

∂t
+ ∇ · (hv) = 0,

∂(hvr)

∂t
+ ∇ · (hvr v − hBr B) + ∂(gh2/2)

∂r
= h(v2

θ − B2
θ )

r
,

∂(hvθ )

∂t
+ ∇r · (hvθ v − hBθ B) + ∂(gh2/2)

∂θ
= 0,

∂(hBr)

∂t
+ 1

r

∂(hvθ Br − hvr Bθ )

∂θ
= −Br∇ · (hB),

∂(hBθ )

∂t
− ∂(hvθ Br − hvr Bθ )

∂r
= −Bθ∇ · (hB),

(A.1)

where

∇ · F = 1

r

∂(r Fr)

∂r
+ 1

r

∂ Fθ

∂θ
, ∇r · F = 1

r2

∂(r2 Fr)

∂r
+ 1

r

∂ Fθ

∂θ
, (A.2)

and Fr, Fθ are the radius and azimuth components of the vector F , respectively.
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